Groundbreaking footage of Antarctica's large Thwaites glacier captured by an underwater robot shows warm water under the glacier

Notice the dog that didn't bark?  They do not mention global warming. As with all Green/Left writing, you are given only half the story.  They COULD NOT attribute the warming observed to global warming because  the warming was UNDER the glacier whereas atmospheric warming would affect the SURFACE of the glacier!

And note that the Thwaites glacier is in the middle of West Antarctica, which is well known for it extensive vulcanism.  The warming observed could only have come from volcanic activity, making this just another confirmation of West Antarctic vulcanism

Given the sporadic nature of volcanic activity, it is puerile to extrapolate the observations below into the distant future

First ever footage of the underside of the 'doomsday' Thwaites glacier has been sent back by a robotic yellow submarine dubbed Icefin.

Glaciologists have likened the groundbreaking images and video to the first steps on the moon taken by Neil Armstrong in 1969.

Early analysis reveals that turbulent warm waters underneath the ice sheet, which is the same size as Britain, are causing an 'unstoppable retreat'.

Experts have previously predicted that if Thwaites was to melt completely, it would lead to a significant increase in worldwide sea levels of around two feet (65cm).

Preliminary data from Icefin was analysed by a team of researchers at New York University and found, for the first time, the presence of warm water underneath the glacier at its grounding line — where the glacier rests on the ocean bed.

David Holland, director of New York University's Environmental Fluid Dynamics Laboratory, said: 'If these waters are causing glacier melt in Antarctica, resulting changes in sea level would be felt in more inhabited parts of the world.'

'The fact that such warm water was just now recorded by our team along a section of Thwaites grounding zone where we have known the glacier is melting suggests that it may be undergoing an unstoppable retreat that has huge implications for global sea level rise,' notes Holland, a professor at NYU's Courant Institute of Mathematical Sciences.

Icefin was deployed five times and covered a distance of more than nine miles (15km) after being released through a borehole 2,000ft (600-meter) deep and 12 inches (35cm) wide earlier this month.

Two of the missions involved travelling as close as possible to the grounding line.

It was recently announced that in mid-January scientists conducted the first fieldwork on Thwaites.

One of the projects from a vast UK-US joint task force involved drilling holes through the glacier near its grounding line.

Some experts call it a grounding line, and some call it a grounding zone, as its exact shape is unknown and  the glacier's base may come into contact with the seabed at various locations.

At this grounding zone, the ice shelf is 1,900 feet (580m) thick.

The submersible yellow submarine-like robot Icefin is capable of navigating the sub-zero waters and was fed through one borehole to study how the glacier is melting.

Icefin is designed to take several measurements, including tracking the turbulence of the water as well as its temperature.

Turbulence causes fresh meltwater from the glacier to mix with salty water from the ocean.

Icefin swam more nine miles (15 km) during five missions, including two to the grounding site — where most melting is thought to be occurring.

Dr Britney Schmidt, a glaciologist at the Georgia Institute of Technology, said: 'We saw amazing ice interactions driven by sediments at the [grounding] line and from the rapid melting from warm ocean water.'

Icefin measured, imaged and mapped the process causing melting at this critical part of the glacier.

The icy 'ceiling' seen in the video is the bottom of the glacier's ice shelf. This section floats in the water as opposed to being nestled on the seafloor.

The observations made by Icefin capture sediment that was on the sea floor just hours previously, as the glacier drifts constantly, exposing new sections of the ice.

Britney Schmidt, a glaciologist at the Georgia Institute of Technology, told The Athletic: 'We can definitely see it melting.

'There are a few places where you can see streams of particles coming off the glaciers, textures and particles that tell us it's melting pretty quickly and irregularly.'

Melting of Thwaites is cause for global concern as its sheer enormity means that it contains enough ice that, if it was to melt, there would be worldwide implications.

Sea level rise would be drastic, up to around 25 inches (63.5cm), and the reach of the ripple-effect would be vast.


No comments:

Post a Comment

All comments containing Chinese characters will not be published as I do not understand them